论文标题

部分可观测时空混沌系统的无模型预测

Knowledge Graph - Deep Learning: A Case Study in Question Answering in Aviation Safety Domain

论文作者

Agarwal, Ankush, Gite, Raj, Laddha, Shreya, Bhattacharyya, Pushpak, Kar, Satyanarayan, Ekbal, Asif, Thind, Prabhjit, Zele, Rajesh, Shankar, Ravi

论文摘要

在商业航空域中,有大量文件,例如事故报告(NTSB,ASRS)和监管指令(ADS)。有必要有效地访问这些多样化的存储库,以便在航空业中的服务需求,例如维护,合规性和安全性。在本文中,我们提出了一个基于深度学习的知识图(kg),基于深度学习(DL)的问答(QA)航空安全系统。我们从飞机事故报告中构建了知识图,并向研究人员社区贡献了这一资源。该资源的功效由上述质量保证系统测试和证明。从上述文档构建的自然语言查询将转换为SPARQL(RDF图数据库的接口语言)查询并回答。在DL方面,我们有两个不同的质量检查模型:(i)Bert QA,它是通道检索(基于句子的)和问题答案(基于BERT)的管道,以及(ii)最近发布的GPT-3。我们根据事故报告创建的一系列查询评估系统。我们合并的QA系统在GPT-3上的准确性增长了9.3%,比Bert QA增加了40.3%。因此,我们推断出KG-DL的性能要比任何一个单一的表现更好。

In the commercial aviation domain, there are a large number of documents, like, accident reports (NTSB, ASRS) and regulatory directives (ADs). There is a need for a system to access these diverse repositories efficiently in order to service needs in the aviation industry, like maintenance, compliance, and safety. In this paper, we propose a Knowledge Graph (KG) guided Deep Learning (DL) based Question Answering (QA) system for aviation safety. We construct a Knowledge Graph from Aircraft Accident reports and contribute this resource to the community of researchers. The efficacy of this resource is tested and proved by the aforesaid QA system. Natural Language Queries constructed from the documents mentioned above are converted into SPARQL (the interface language of the RDF graph database) queries and answered. On the DL side, we have two different QA models: (i) BERT QA which is a pipeline of Passage Retrieval (Sentence-BERT based) and Question Answering (BERT based), and (ii) the recently released GPT-3. We evaluate our system on a set of queries created from the accident reports. Our combined QA system achieves 9.3% increase in accuracy over GPT-3 and 40.3% increase over BERT QA. Thus, we infer that KG-DL performs better than either singly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源