论文标题

地理Neus:多视图重建的几何形状一致的神经隐式表面学习

Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruction

论文作者

Fu, Qiancheng, Xu, Qingshan, Ong, Yew-Soon, Tao, Wenbing

论文摘要

最近,通过音量渲染的神经隐式表面学习已成为多视图重建的流行。但是,一个关键的挑战仍然存在:现有方法缺乏明确的多视图几何约束,因此通常无法生成几何形状一致的表面重建。为了应对这一挑战,我们建议对多视图重建的几何形状一致的神经隐式表面学习。我们从理论上分析了体积渲染积分与基于点的签名距离函数(SDF)建模之间存在差距。为了弥合此差距,我们直接找到了零级的SDF网络集,并通过利用Motion(SFM)的结构(SFM)和多视图立体的光度一致性来明确执行多视图几何优化。这使我们的SDF优化无偏见,并允许多视图几何约束专注于真实的表面优化。广泛的实验表明,我们提出的方法在复杂的薄结构和较大的平滑区域都达到了高质量的表面重建,从而超过了最先进的边缘。

Recently, neural implicit surfaces learning by volume rendering has become popular for multi-view reconstruction. However, one key challenge remains: existing approaches lack explicit multi-view geometry constraints, hence usually fail to generate geometry consistent surface reconstruction. To address this challenge, we propose geometry-consistent neural implicit surfaces learning for multi-view reconstruction. We theoretically analyze that there exists a gap between the volume rendering integral and point-based signed distance function (SDF) modeling. To bridge this gap, we directly locate the zero-level set of SDF networks and explicitly perform multi-view geometry optimization by leveraging the sparse geometry from structure from motion (SFM) and photometric consistency in multi-view stereo. This makes our SDF optimization unbiased and allows the multi-view geometry constraints to focus on the true surface optimization. Extensive experiments show that our proposed method achieves high-quality surface reconstruction in both complex thin structures and large smooth regions, thus outperforming the state-of-the-arts by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源