论文标题
SaccadeNet:实时扫视虚拟现实无限步行的预测
SaccadeNet: Towards Real-time Saccade Prediction for Virtual Reality Infinite Walking
论文作者
论文摘要
现代重定向步行(RDW)技术的表现明显优于古典解决方案。然而,它们通常受到对嵌入VR耳机中的眼睛跟踪硬件的严重限制,以揭示重定向机会。 我们提出了一种新型的RDW技术,该技术利用了由于扫视而引起的临时失明。但是,与最先进的方法不同,我们的方法不会施加额外的眼睛追踪硬件要求。取而代之的是,SaccadeNet是一个深层神经网络,对头部旋转数据进行了训练,以在明显的头部旋转过程中实时预测扫视。然后将刚性变换应用于这些扫视的发作持续时间内的虚拟环境以进行重定向。但是,SaccadeNet只有在与中等认知工作载荷结合使用后才有效,从而引起了重复的头部旋转。 我们提供三个用户研究。在第一次用户研究中确认了头部和目光方向之间的关系,然后在我们的第二次用户研究中进行了培训数据收集。然后,经过一些微调实验,在第三次用户研究中评估了我们的RDW技术的性能。最后,我们提出了证明我们方法功效的结果。它允许用户在$ 35 x 350万美元的物理跟踪空间的350万美元内至少38米的直距。此外,我们的系统解锁了广泛使用的消费级硬件的Saccadic重定向,而无需进行眼睛跟踪。
Modern Redirected Walking (RDW) techniques significantly outperform classical solutions. Nevertheless, they are often limited by their heavy reliance on eye-tracking hardware embedded within the VR headset to reveal redirection opportunities. We propose a novel RDW technique that leverages the temporary blindness induced due to saccades for redirection. However, unlike the state-of-the-art, our approach does not impose additional eye-tracking hardware requirements. Instead, SaccadeNet, a deep neural network, is trained on head rotation data to predict saccades in real-time during an apparent head rotation. Rigid transformations are then applied to the virtual environment for redirection during the onset duration of these saccades. However, SaccadeNet is only effective when combined with moderate cognitive workload that elicits repeated head rotations. We present three user studies. The relationship between head and gaze directions is confirmed in the first user study, followed by the training data collection in our second user study. Then, after some fine-tuning experiments, the performance of our RDW technique is evaluated in a third user study. Finally, we present the results demonstrating the efficacy of our approach. It allowed users to walk up a straight virtual distance of at least 38 meters from within a $3.5 x 3.5m^2$ of the physical tracked space. Moreover, our system unlocks saccadic redirection on widely used consumer-grade hardware without eye-tracking.