论文标题
哮喘药物依从性的AI支持的声音模式识别:使用RDA基准套件进行评估
AI-enabled Sound Pattern Recognition on Asthma Medication Adherence: Evaluation with the RDA Benchmark Suite
论文作者
论文摘要
哮喘是一种常见的,通常是长期的呼吸道疾病,对全球社会和经济产生负面影响。治疗涉及使用将药物分配到气道的医疗设备(吸入器),其效率取决于吸入技术的精度。在临床咨询期间,需要进行客观方法评估吸入技术的临床需求。配备传感器的集成健康监测系统使能够识别药物驱动的识别,并嵌入了来自智能结构的声音检测,分析和识别,可以为可靠的内容管理提供强大的工具。配备有传感器的健康监测系统,嵌入了声音信号检测,可以识别药物驱动,可用于有效的音频含量分析。本文通过用于哮喘药物依从性评估的机器学习技术重新审视声音模式识别,并介绍了呼吸和药物驱动(RDA)套件(https://gitlab.com/vvr/monitoring-menoriting-medication-medication-medication-medication-medication-medication-medication-redherence/rda-benchmark),用于基础标记和进一步研究。 RDA套件包括一组用于音频处理,功能提取和分类程序的工具,并与数据集一起提供,包括呼吸和药物驱动声音。 RDA中的分类模型是根据常规和高级机器学习和深网的体系结构实现的。这项研究提供了对实施方法的比较评估,检查了潜在的改进并讨论挑战和未来趋势。
Asthma is a common, usually long-term respiratory disease with negative impact on global society and economy. Treatment involves using medical devices (inhalers) that distribute medication to the airways and its efficiency depends on the precision of the inhalation technique. There is a clinical need for objective methods to assess the inhalation technique, during clinical consultation. Integrated health monitoring systems, equipped with sensors, enable the recognition of drug actuation, embedded with sound signal detection, analysis and identification, from intelligent structures, that could provide powerful tools for reliable content management. Health monitoring systems equipped with sensors, embedded with sound signal detection, enable the recognition of drug actuation and could be used for effective audio content analysis. This paper revisits sound pattern recognition with machine learning techniques for asthma medication adherence assessment and presents the Respiratory and Drug Actuation (RDA) Suite (https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark) for benchmarking and further research. The RDA Suite includes a set of tools for audio processing, feature extraction and classification procedures and is provided along with a dataset, consisting of respiratory and drug actuation sounds. The classification models in RDA are implemented based on conventional and advanced machine learning and deep networks' architectures. This study provides a comparative evaluation of the implemented approaches, examines potential improvements and discusses on challenges and future tendencies.