论文标题
基于GAT的CRF的平均场推理
Mean Field inference of CRFs based on GAT
论文作者
论文摘要
在本文中,我们为完全连接的配对CRFS模型提出了改进的平均场推理算法。改进的方法消息传递操作从原始线性卷积更改为当前的图形注意操作,而推论算法的过程将变成GAT模型的正向过程。结合平均场推断的标签分布,它等效于只有一单位势的分类器的输出。为此,我们提出了一个具有残差结构的图形注意网络模型,模型方法适用于所有序列注释任务,例如像素级图像映像语义分段任务以及文本注释任务。
In this paper we propose an improved mean-field inference algorithm for the fully connected paired CRFs model. The improved method Message Passing operation is changed from the original linear convolution to the present graph attention operation, while the process of the inference algorithm is turned into the forward process of the GAT model. Combined with the mean-field inferred label distribution, it is equivalent to the output of a classifier with only unary potential. To this end, we propose a graph attention network model with residual structure, and the model approach is applicable to all sequence annotation tasks, such as pixel-level image semantic segmentation tasks as well as text annotation tasks.