论文标题
相对阶层集合共同体分类为扩展的持久图
Relative Interlevel Set Cohomology Categorifies Extended Persistence Diagrams
论文作者
论文摘要
Cohen-Steiner,Edelsbrunner和Harer介绍的扩展持久图是真实价值的连续功能的不变性,它是$ \ Mathbb {F} $ - 驯服的意义,因为所有开放式interlevel set都具有固定字段的固定字段$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f \ \ \ f。我们表明,基于Carlsson,De Silva和Morozov的Mayer-Vietoris Pyramid基于Mayer-Vietoris Pyramid的相对阶层集合共同体学(RISC)对此不变分类。更具体地说,我们定义了一个Abelian Frobenius类别$ \ MATHRM {PRES}(\ Mathcal {J})Presheaves的$,从某种意义上说,它们是可以显示的,因此Risc $ h(f)$ a $ \ m athbb {f} $ \ mathrm {pres}(\ Mathcal {j})$,此外,$ f $的扩展持久图唯一确定 - 并由 - 相应的元素$ [h(f)] \ in K_0(\ mathrm i {pres}(pres}) (\ Mathrm {Pres}(\ Mathcal {J}))$的$ abelian类别$ \ MATHRM {PRES}(\ MATHCAL {J})$。 As an intermediate step we show that $\mathrm{pres}(\mathcal{J})$ is the abelianization of the (localized) category of complexes of $\mathbb{F}$-linear sheaves on $\mathbb{R}$, which are tame in the sense that sheaf cohomology of any open interval is finite-dimensional in each degree.这产生了Curry,Kashiwara和Schapira的派生水平设置持久性与扩展持久图的分类之间的紧密联系。
The extended persistence diagram introduced by Cohen-Steiner, Edelsbrunner, and Harer is an invariant of real-valued continuous functions, which are $\mathbb{F}$-tame in the sense that all open interlevel sets have degree-wise finite-dimensional cohomology with coefficients in a fixed field $\mathbb{F}$. We show that relative interlevel set cohomology (RISC), which is based on the Mayer--Vietoris pyramid by Carlsson, de Silva, and Morozov, categorifies this invariant. More specifically, we define an abelian Frobenius category $\mathrm{pres}(\mathcal{J})$ of presheaves, which are presentable in a certain sense, such that the RISC $h(f)$ of an $\mathbb{F}$-tame function $f \colon X \rightarrow \mathbb{R}$ is an object of $\mathrm{pres}(\mathcal{J})$, and moreover the extended persistence diagram of $f$ uniquely determines - and is determined by - the corresponding element $[h(f)] \in K_0 (\mathrm{pres}(\mathcal{J}))$ in the Grothendieck group $K_0 (\mathrm{pres}(\mathcal{J}))$ of the abelian category $\mathrm{pres}(\mathcal{J})$. As an intermediate step we show that $\mathrm{pres}(\mathcal{J})$ is the abelianization of the (localized) category of complexes of $\mathbb{F}$-linear sheaves on $\mathbb{R}$, which are tame in the sense that sheaf cohomology of any open interval is finite-dimensional in each degree. This yields a close link between derived level set persistence by Curry, Kashiwara, and Schapira and the categorification of extended persistence diagrams.