论文标题

对抗训练的强大重量扰动

Robust Weight Perturbation for Adversarial Training

论文作者

Yu, Chaojian, Han, Bo, Gong, Mingming, Shen, Li, Ge, Shiming, Du, Bo, Liu, Tongliang

论文摘要

对对抗性网络的对抗性训练,过度拟合过度存在。一种有效的补救措施是对抗重量扰动,它通过在对抗性示例中最大化分类损失,从而在网络训练过程中注入了最差的重量扰动。对抗重量扰动有助于减少稳健的泛化差距;但是,这也破坏了稳健性的改善。因此,调节重量扰动的标准对于对抗训练至关重要。在本文中,我们提出了这样的标准,即损失静止条件(LSC),以进行受约束的扰动。使用LSC,我们发现对具有少量分类损失的对抗数据进行体重扰动以消除强大的过度拟合。对具有较大分类损失的对抗数据的重量扰动是不需要的,甚至可能导致稳健性差。基于这些观察结果,我们提出了一种强大的扰动策略来限制体重扰动的程度。扰动策略可防止深层网络过度拟合,同时避免重量过度扰动的副作用,从而显着提高对抗性训练的鲁棒性。广泛的实验证明了所提出的方法比最先进的对抗训练方法的优越性。

Overfitting widely exists in adversarial robust training of deep networks. An effective remedy is adversarial weight perturbation, which injects the worst-case weight perturbation during network training by maximizing the classification loss on adversarial examples. Adversarial weight perturbation helps reduce the robust generalization gap; however, it also undermines the robustness improvement. A criterion that regulates the weight perturbation is therefore crucial for adversarial training. In this paper, we propose such a criterion, namely Loss Stationary Condition (LSC) for constrained perturbation. With LSC, we find that it is essential to conduct weight perturbation on adversarial data with small classification loss to eliminate robust overfitting. Weight perturbation on adversarial data with large classification loss is not necessary and may even lead to poor robustness. Based on these observations, we propose a robust perturbation strategy to constrain the extent of weight perturbation. The perturbation strategy prevents deep networks from overfitting while avoiding the side effect of excessive weight perturbation, significantly improving the robustness of adversarial training. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-art adversarial training methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源