论文标题

部分可观测时空混沌系统的无模型预测

ProxyMix: Proxy-based Mixup Training with Label Refinery for Source-Free Domain Adaptation

论文作者

Ding, Yuhe, Sheng, Lijun, Liang, Jian, Zheng, Aihua, He, Ran

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Owing to privacy concerns and heavy data transmission, source-free UDA, exploiting the pre-trained source models instead of the raw source data for target learning, has been gaining popularity in recent years. Some works attempt to recover unseen source domains with generative models, however introducing additional network parameters. Other works propose to fine-tune the source model by pseudo labels, while noisy pseudo labels may misguide the decision boundary, leading to unsatisfied results. To tackle these issues, we propose an effective method named Proxy-based Mixup training with label refinery (ProxyMix). First of all, to avoid additional parameters and explore the information in the source model, ProxyMix defines the weights of the classifier as the class prototypes and then constructs a class-balanced proxy source domain by the nearest neighbors of the prototypes to bridge the unseen source domain and the target domain. To improve the reliability of pseudo labels, we further propose the frequency-weighted aggregation strategy to generate soft pseudo labels for unlabeled target data. The proposed strategy exploits the internal structure of target features, pulls target features to their semantic neighbors, and increases the weights of low-frequency classes samples during gradient updating. With the proxy domain and the reliable pseudo labels, we employ two kinds of mixup regularization, i.e., inter- and intra-domain mixup, in our framework, to align the proxy and the target domain, enforcing the consistency of predictions, thereby further mitigating the negative impacts of noisy labels. Experiments on three 2D image and one 3D point cloud object recognition benchmarks demonstrate that ProxyMix yields state-of-the-art performance for source-free UDA tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源