论文标题
贝叶斯通过非参数转换模型的预测
Bayesian prediction via nonparametric transformation models
论文作者
论文摘要
本文以新的贝叶斯方式通过非参数转换模型(NTM)解决了旧的预测问题。由于模型无法识别性,由于其在生存分析中具有强大的预测能力,因此已知NTM的估计是挑战性的。受后验预测分布的独特性的启发,我们通过贝叶斯范式下的上述NTM实现有效的预测。我们的策略是为非参数组件分配弱信息的先验,而不是通过在现有文献中添加复杂的约束来识别模型。贝叶斯的成功向i)i)通过指数转换来向NTM的微妙铸造致敬,目的是将无限维参数的空间压缩为正象限的正象限,以考虑到失败时间的非负性; ii)重铸造函数的新构建的新构建的弱信息结i-splines与分配给误差分布的dirichlet工艺混合模型。此外,通过后修改,我们为已确定的参数组件提供了方便而精确的估计器,从而实现了有效的相对风险。实际数据集上的仿真和应用程序表明,我们的方法是强大的,并且表现优于竞争方法。 R包装可预测生存曲线,估计相对风险并促进后检查。
This article tackles the old problem of prediction via a nonparametric transformation model (NTM) in a new Bayesian way. Estimation of NTMs is known challenging due to model unidentifiability though appealing because of its robust prediction capability in survival analysis. Inspired by the uniqueness of the posterior predictive distribution, we achieve efficient prediction via the NTM aforementioned under the Bayesian paradigm. Our strategy is to assign weakly informative priors to nonparametric components rather than identify the model by adding complicated constraints in the existing literature. The Bayesian success pays tribute to i) a subtle cast of NTMs by an exponential transformation for the purpose of compressing spaces of infinite-dimensional parameters to positive quadrants considering non-negativity of the failure time; ii) a newly constructed weakly informative quantile-knots I-splines prior for the recast transformation function together with the Dirichlet process mixture model assigned to the error distribution. In addition, we provide a convenient and precise estimator for the identified parameter component subject to the general unit-norm restriction through posterior modification, enabling effective relative risks. Simulations and applications on real datasets reveal that our method is robust and outperforms the competing methods. An R package BuLTM is available to predict survival curves, estimate relative risks, and facilitate posterior checking.