论文标题

针对私人链接推理攻击的大规模保护网络嵌入

Large-Scale Privacy-Preserving Network Embedding against Private Link Inference Attacks

论文作者

Han, Xiao, Wang, Leye, Wu, Junjie, Yang, Yuncong

论文摘要

网络嵌入通过低维的信息向量代表网络节点。尽管它通常对于各种下游任务有效,但它可能会泄露网络的一些私人信息,例如隐藏的私有链接。在这项工作中,我们解决了嵌入私人链接推理攻击的隐私网络的新问题。基本上,我们建议通过添加或删除链接来扰动原始网络,并期望在扰动网络上生成的嵌入方式可以泄漏有关私人链接的很少的信息,但对各种下游任务持有高实用性。为了实现这一目标,我们首先提出了一般测量,以量化候选网络扰动产生的隐私收益和公用事业损失;然后,我们设计一个PPNE框架,以迭代方式以最佳的隐私 - 耐用性权衡来识别最佳扰动解决方案。此外,我们提出了许多技术来加速PPNE并确保其可扩展性。例如,由于包括深行和线在内的跳过嵌入方法可以看作是矩阵分解,并具有封闭形式的嵌入结果,因此我们设计了有效的隐私收益和实用性损失近似方法,以避免每次迭代中每个候选网络扰动的重复性时间嵌入嵌入培训。在现实生活中的网络数据集(最多具有数百万个节点)上进行的实验证明,PPNE通过牺牲较少的效用并获得更高的隐私保护来优于基本线。

Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks. Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a PPNE framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源