论文标题

Laplace Hypopinn:物理信息的神经网络,用于降低定位及其预测性不确定性

Laplace HypoPINN: Physics-Informed Neural Network for hypocenter localization and its predictive uncertainty

论文作者

Izzatullah, Muhammad, Yildirim, Isa Eren, Waheed, Umair Bin, Alkhalifah, Tariq

论文摘要

多年来,已经提出了几种用于自动降低定位的技术。尽管这些技术具有利弊,即权衡计算效率以及被困在本地最小值中的敏感性,但需要一种替代方法,它可以允许稳健的本地化性能,并具有使实时微观震荡监测的难以捉摸的目标。物理知识的神经网络(PINN)已出现在现场,是一个灵活且通用的框架,用于求解部分微分方程(PDE)以及相关的初始或边界条件。我们开发了Hypopinn-基于PINN的反转倒置框架,用于估算其预测性不确定性,引入了近似贝叶斯框架。这项工作着重于使用Hypopinn预测降期位置,并研究了使用Laplace近似值对Hypopinn的重量和偏见的随机实现的不确定性传播。我们训练Hypopinn以获得预测降温位置的优化权重。接下来,我们在优化的Hypopinn的权重以使用拉普拉斯近似的后取样处近似于协方差矩阵。后样品代表了Hypopinn重量的各种实现。最后,我们预测了与这些权重实现相关的低中心者的位置,以研究来自这些实现的不确定性传播。我们通过几个数值示例演示了该方法的特征,包括使用基于澳大利亚Otway项目的Otway速度模型。

Several techniques have been proposed over the years for automatic hypocenter localization. While those techniques have pros and cons that trade-off computational efficiency and the susceptibility of getting trapped in local minima, an alternate approach is needed that allows robust localization performance and holds the potential to make the elusive goal of real-time microseismic monitoring possible. Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and versatile framework for solving partial differential equations (PDEs) along with the associated initial or boundary conditions. We develop HypoPINN -- a PINN-based inversion framework for hypocenter localization and introduce an approximate Bayesian framework for estimating its predictive uncertainties. This work focuses on predicting the hypocenter locations using HypoPINN and investigates the propagation of uncertainties from the random realizations of HypoPINN's weights and biases using the Laplace approximation. We train HypoPINN to obtain the optimized weights for predicting hypocenter location. Next, we approximate the covariance matrix at the optimized HypoPINN's weights for posterior sampling with the Laplace approximation. The posterior samples represent various realizations of HypoPINN's weights. Finally, we predict the locations of the hypocenter associated with those weights' realizations to investigate the uncertainty propagation that comes from those realisations. We demonstrate the features of this methodology through several numerical examples, including using the Otway velocity model based on the Otway project in Australia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源