论文标题
曲率诱导的超导超导膜的超导性增强
Curvature-induced superconductivity enhancement for ultra-thin superconducting films
论文作者
论文摘要
我们得出了线性化的金茨堡 - 兰道(GL)方程,用于在磁场中具有曲率的超薄超导膜。通过引入一个新型的横向参数,该参数沿膜缓慢变化,并应用超导/真空边界条件,我们将线性化的GL方程式分离为横向部分和一个包括超导几何势(GP)的表面部分。曲面薄超导膜中超导状态的成核可以由表面部分方程进行等效。在弯曲的超导膜的等效GL自由能中,超导GP即使超导参数$α$通过进一步降低阶参数的二次项,即使超导参数$α$也使膜保持在超导状态。此外,我们从数值上研究了矩形薄的超导膜在圆柱表面周围弯曲的相变。我们的数值结果表明,超导GP通过削弱磁场的效果来增强曲线膜的超导性,并且在大量临界温度的单位中,临界温度的升高等于负超导GP的产物,而零电池相干长度的平方长度则与我们的零元素相一致,这与我们的理论预测相一致。
We derive the linearized Ginzburg-Landau (GL) equation for an ultra-thin superconducting film with curvature in a magnetic field. By introducing a novel transverse order parameter that varies slowly along the film, and applying the superconducting/vacuum boundary condition, we decouple the linearized GL equation into a transverse part and a surface part that includes the superconducting geometric potential (GP). The nucleation of the superconducting state in curved thin superconducting films can be equivalently described by the surface part equation. In the equivalent GL free energy of a curved superconducting film, the superconducting GP enables the film to remain in the superconducting state even when the superconducting parameter $ α$ turns positive by further reducing the quadratic term of the order parameter. Furthermore, we numerically investigate the phase transition of a rectangle thin superconducting film bent around a cylindrical surface. Our numerical results show that the superconducting GP enhances the superconductivity of the curved film by weakening the effect of the magnetic field, and the increase of the critical temperature, in units of the bulk critical temperature, is equal to the product of the negative superconducting GP and the square of the zero-temperature coherence length, which agrees with our theoretical predictions.