论文标题

通过机会计算在移动环境中提供服务

Service Provisioning in Mobile Environments through Opportunistic Computing

论文作者

Mascitti, Davide, Conti, Marco, Passarella, Andrea, Ricci, Laura, Das, Sajal K.

论文摘要

机会计算是完全自组织普遍网络的范式。用户的设备不仅依靠固定的基础架构作为云,还可以作为彼此的服务提供商。他们使用成对的联系人收集有关所提供服务的信息以及遇到的节点提供的时间。在每个节点,在生成服务请求时,此信息用于根据本地知识选择满足该请求的最有效的服务或服务的组成。机会计算可以在几种情况下被利用,包括移动社交网络,物联网和Internet 4.0。在本文中,我们提出了一种基于分析模型的机会计算算法,该算法根据其预期的完成时间对服务的可用(组成)进行排名。通过模型,服务请求者选择了预期最好的请求。实验表明该算法在对服务的排名中是准确的,因此提供了有效的服务选择策略。与其他参考政策相比,这种政策的服务供应时间大大降低。它的性能在各种方案中进行了测试,以改变节点移动性,输入/输出参数的大小,资源拥塞的水平,服务执行的计算复杂性。

Opportunistic computing is a paradigm for completely self-organised pervasive networks. Instead of relying only on fixed infrastructures as the cloud, users' devices act as service providers for each other. They use pairwise contacts to collect information about services provided and amount of time to provide them by the encountered nodes. At each node, upon generation of a service request, this information is used to choose the most efficient service, or composition of services, that satisfy that request, based on local knowledge. Opportunistic computing can be exploited in several scenarios, including mobile social networks, IoT and Internet 4.0. In this paper we propose an opportunistic computing algorithm based on an analytical model, which ranks the available (composition of) services, based on their expected completion time. Through the model, a service requesters picks the one that is expected to be the best. Experiments show that the algorithm is accurate in ranking services, thus providing an effective service-selection policy. Such a policy achieves significantly lower service provisioning times compared to other reference policies. Its performance is tested in a wide range of scenarios varying the nodes mobility, the size of input/output parameters, the level of resource congestion, the computational complexity of service executions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源