论文标题

带有组优化奖励的增强行人属性识别

Reinforced Pedestrian Attribute Recognition with Group Optimization Reward

论文作者

Ji, Zhong, Hu, Zhenfei, Wang, Yaodong, Li, Shengjia

论文摘要

行人属性识别(PAR)是智能视频监视的一项艰巨任务。 PAR中的两个主要挑战包括图像和属性之间的复杂对齐关系以及数据分布不平衡。现有方法通常将par作为识别任务。与他们不同,本文通过加强学习框架将其作为决策任务。具体而言,通过设计巧妙的状态,行动空间,奖励功能和状态过渡,将PAR作为马尔可夫决策过程(MDP)提出。为了减轻属性不平衡问题,我们通过根据其区域和类别信息将所有属性分为子组来应用属性分组策略(AGS)。然后,我们采用一个代理来识别每组属性,该属性是通过深Q学习算法训练的。我们还提出了一个小组优化奖励(GOR)功能,以减轻属性内部不平衡问题。 PETA,RAP和PA100K的三个基准数据集的实验结果说明了拟议方法的有效性和竞争力,并证明将强化学习应用于PAR是一个有价值的研究方向。

Pedestrian Attribute Recognition (PAR) is a challenging task in intelligent video surveillance. Two key challenges in PAR include complex alignment relations between images and attributes, and imbalanced data distribution. Existing approaches usually formulate PAR as a recognition task. Different from them, this paper addresses it as a decision-making task via a reinforcement learning framework. Specifically, PAR is formulated as a Markov decision process (MDP) by designing ingenious states, action space, reward function and state transition. To alleviate the inter-attribute imbalance problem, we apply an Attribute Grouping Strategy (AGS) by dividing all attributes into subgroups according to their region and category information. Then we employ an agent to recognize each group of attributes, which is trained with Deep Q-learning algorithm. We also propose a Group Optimization Reward (GOR) function to alleviate the intra-attribute imbalance problem. Experimental results on the three benchmark datasets of PETA, RAP and PA100K illustrate the effectiveness and competitiveness of the proposed approach and demonstrate that the application of reinforcement learning to PAR is a valuable research direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源