论文标题
自动化动态算法配置
Automated Dynamic Algorithm Configuration
论文作者
论文摘要
算法的性能通常取决于其参数配置。尽管已经提出了各种自动化算法配置方法,以减轻用户从繁琐而容易出错的任务中手动调整参数的任务,但由于学习的配置是静态的,因此仍然存在很多未开发的潜力,即,参数设置在整个运行过程中保持固定。但是,已经表明,在执行过程中,最好对某些算法参数进行动态调整,例如,以适应优化景观的当前部分。到目前为止,这通常是通过手工制作的启发式方法来实现的。最近有希望的选择是从数据自动学习这种动态参数适应策略。在本文中,我们对这一新的自动化动态算法配置(DAC)的新领域进行了首次综合描述,并提出了一系列最新进步,并为该领域的未来研究奠定了坚实的基础。具体而言,我们(i)将DAC置于AI研究的更广泛的历史背景下; (ii)将DAC形式化为计算问题; (iii)确定在ART中使用的方法来解决此问题; (iv)在进化优化,AI计划和机器学习中使用DAC进行经验案例研究。
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.