论文标题

粒子系统分子动力学模拟的随机批次总和

Random batch sum-of-Gaussians method for molecular dynamics simulations of particle systems

论文作者

Liang, Jiuyang, Xu, Zhenli, Zhou, Qi

论文摘要

我们开发了一种具有远距离相互作用的系统的分子动力学模拟,开发了一种准确,高效且可扩展的随机批次总和(RBSOG)方法。 RBSOG方法的想法基于库仑内核的高斯分解,然后采用了在傅立叶空间上进行随机批次的重要性采样,以近似于高斯较大带宽(长期组件)的高斯傅立叶扩张的总和。重要性采样可显着降低计算成本,从而避免使用通信密集型快速傅立叶变换来产生可扩展的算法。存在理论分析以证明近似力的无偏,方差的可控性和算法的弱收敛性。结果方法具有$ \ MATHCAL {O}(n)$复杂性,并且通信延迟较低。据报道,基准问题的动态和平衡性能的准确模拟结果据报道说明了该方法的有吸引力的性能。还进行了平行计算上的模拟以显示高平行效率。 RBSOG方法可以直接扩展到与长范围内核的更一般相互作用,因此有望构建各种相互作用核的一系列分子动力学方法的快速算法。

We develop an accurate, highly efficient and scalable random batch sum-of-Gaussians (RBSOG) method for molecular dynamics simulations of systems with long-range interactions. The idea of the RBSOG method is based on a sum-of-Gaussians decomposition of the Coulomb kernel, and then a random batch importance sampling on the Fourier space is employed for approximating the summation of the Fourier expansion of the Gaussians with large bandwidths (the long-range components). The importance sampling significantly reduces the computational cost, resulting in a scalable algorithm by avoiding the use of communication-intensive fast Fourier transform. Theoretical analysis is present to demonstrate the unbiasedness of the approximate force, the controllability of variance and the weak convergence of the algorithm. The resulting method has $\mathcal{O}(N)$ complexity with low communication latency. Accurate simulation results on both dynamical and equilibrium properties of benchmark problems are reported to illustrate the attractive performance of the method. Simulations on parallel computing are also performed to show the high parallel efficiency. The RBSOG method can be straightforwardly extended to more general interactions with long ranged kernels, and thus is promising to construct fast algorithms of a series of molecular dynamics methods for various interacting kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源