论文标题

修剪和蒸馏:沿着大鼠视觉皮层和深层神经网络的图像信息的类似重新格式化

Prune and distill: similar reformatting of image information along rat visual cortex and deep neural networks

论文作者

Muratore, Paolo, Tafazoli, Sina, Piasini, Eugenio, Laio, Alessandro, Zoccolan, Davide

论文摘要

在神经科学和计算机视觉上都对视觉对象识别进行了广泛的研究。最近,已显示出最流行的该任务的人工系统,即深卷积神经网络(CNN),已显示出为其在大脑(视觉皮层中的腹侧流)的功能模拟提供出色的模型。这引发了问题,即当视觉信息流过CNN或腹侧时,视觉信息重新标准的基础是什么(如果有的话)。在这里,我们考虑了一些突出的统计模式,这些模式已知存在于CNN或视觉皮层的内部表示中,并在另一系统中寻找它们。我们表明,沿着腹流的大鼠同源物的对象表示的固有维度(ID)呈现两个不同的扩张量阶段,如先前所示的CNN所示。相反,在CNN中,我们表明训练会导致蒸馏和主动修剪(反映单个单位中低至中级图像信息的ID增加),因为表示能力获得支持不变歧视的能力,并且与大鼠Visual Cortex中先前的观察结果一致。综上所述,我们的发现表明,CNN和Visual Cortex在维度扩展/减少对象表示与图像信息的重新格式之间有着类似的紧密关系。

Visual object recognition has been extensively studied in both neuroscience and computer vision. Recently, the most popular class of artificial systems for this task, deep convolutional neural networks (CNNs), has been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex. This has prompted questions on what, if any, are the common principles underlying the reformatting of visual information as it flows through a CNN or the ventral stream. Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex and look for them in the other system. We show that intrinsic dimensionality (ID) of object representations along the rat homologue of the ventral stream presents two distinct expansion-contraction phases, as previously shown for CNNs. Conversely, in CNNs, we show that training results in both distillation and active pruning (mirroring the increase in ID) of low- to middle-level image information in single units, as representations gain the ability to support invariant discrimination, in agreement with previous observations in rat visual cortex. Taken together, our findings suggest that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源