论文标题

通过几个嵌入来代表大脑解剖学的规律性和可变性

Representing Brain Anatomical Regularity and Variability by Few-Shot Embedding

论文作者

Zhang, Lu, Yu, Xiaowei, Lyu, Yanjun, Wu, Zhengwang, Dai, Haixing, Zhao, Lin, Wang, Li, Li, Gang, Liu, Tianming, Zhu, Dajiang

论文摘要

大脑解剖结构的有效表示对于理解大脑的规律性和可变性至关重要。尽管做出了许多努力,但由于皮质折叠模式的巨大个性变异性,仍然很难在更细节上推断出可靠的解剖对应关系。在比较不同神经发展阶段的大脑时,删除常见和个体模式更具挑战性。在这项工作中,我们开发了一种基于学习的新型嵌入框架,将皮质折叠模式编码为由一组解剖学上有意义的嵌入向量表示的潜在空间。具体而言,我们采用了3-Hinge(3HG)网络作为底物,并设计了一个基于自动编码器的嵌入式框架,以学习每个3HG的多跳功能的通用嵌入向量:每个3HG可以通过一组单个特定系数的嵌入方式组合来表示这些特征嵌入的组合,以表征个体化的个体化解剖学信息。也就是说,折叠模式的规律性被编码到嵌入式中,而单个变化由Multi = Hop组合系数保留。为了有效地学习样本非常有限的人群的嵌入,几乎没有学习。我们将方法应用于具有1,000多个大脑的成人HCP和小儿数据集(从34个妊娠周到年轻人)。我们的实验结果表明:1)学习的嵌入向量可以定量编码皮质折叠模式的共同点和个性; 2)借助嵌入,我们可以鲁and,推断出不同大脑之间的复杂多到许多解剖对应关系,3)我们的模型可以成功地转移到具有非常有限的训练样本的新种群中。

Effective representation of brain anatomical architecture is fundamental in understanding brain regularity and variability. Despite numerous efforts, it is still difficult to infer reliable anatomical correspondence at finer scale, given the tremendous individual variability in cortical folding patterns. It is even more challenging to disentangle common and individual patterns when comparing brains at different neuro-developmental stages. In this work, we developed a novel learning-based few-shot embedding framework to encode the cortical folding patterns into a latent space represented by a group of anatomically meaningful embedding vectors. Specifically, we adopted 3-hinge (3HG) network as the substrate and designed an autoencoder-based embedding framework to learn a common embedding vector for each 3HG's multi-hop feature: each 3HG can be represented as a combination of these feature embeddings via a set of individual specific coefficients to characterize individualized anatomical information. That is, the regularity of folding patterns is encoded into the embeddings, while the individual variations are preserved by the multi=hop combination coefficients. To effectively learn the embeddings for the population with very limited samples, few-shot learning was adopted. We applied our method on adult HCP and pediatric datasets with 1,000+ brains (from 34 gestational weeks to young adult). Our experimental results show that: 1) the learned embedding vectors can quantitatively encode the commonality and individuality of cortical folding patterns; 2) with the embeddings we can robustly infer the complicated many-to-many anatomical correspondences among different brains and 3) our model can be successfully transferred to new populations with very limited training samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源