论文标题
Bernstein-Vazirani算法中的纠缠与连贯性
Entanglement and coherence in Bernstein-Vazirani algorithm
论文作者
论文摘要
量子算法允许在各种任务中优于其经典对应物,最突出的例子是Shor的算法,用于在量子计算机上有效分解质量分解。显然,加速的原因之一是量子力学的叠加原理,它允许量子处理器同时处于不同状态的叠加位置。尽管这种叠加可以导致跨处理器的纠缠,但也存在量子算法,这些算法算法使用单个Qubits的叠加而无需纠缠它们的量子。例如,Bernstein-Vazirani算法允许确定编码为Oracle的位字符串。尽管该算法的经典版本需要Oracle的多个调用来学习位字符串,但在量子情况下,Oracle的单个查询就足够了。在这封信中,我们详细分析了Bernstein-Vazirani算法中的量子资源。为此,我们介绍并研究了其概率版本,其目标是在单一呼叫Oracle后猜测位字符串。我们表明,在没有纠缠的情况下,该算法的性能与初始状态下的量子相干性量直接相关。我们进一步证明,初始状态中大量的纠缠阻止算法无法实现最佳性能。我们还将我们的方法应用于混合状态的量子计算,证明伪态在伯恩斯坦 - 瓦泽拉尼算法中具有最佳性能。我们进一步研究了一个干净的量子量子模型中的量子资源,表明该模型即使有少量的多部分纠缠,一般的量子相关性和连贯性也可以在任何已知的经典算法上表现出速度。
Quantum algorithms allow to outperform their classical counterparts in various tasks, most prominent example being Shor's algorithm for efficient prime factorization on a quantum computer. It is clear that one of the reasons for the speedup is the superposition principle of quantum mechanics, which allows a quantum processor to be in a superposition of different states at the same time. While such superposition can lead to entanglement across different qubits of the processors, there also exists quantum algorithms which outperform classical ones using superpositions of individual qubits without entangling them. As an example, the Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle. While the classical version of the algorithm requires multiple calls of the oracle to learn the bit string, a single query of the oracle is enough in the quantum case. In this Letter, we analyze in detail the quantum resources in the Bernstein-Vazirani algorithm. For this, we introduce and study its probabilistic version, where the goal is to guess the bit string after a single call of the oracle. We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state. We further demonstrate that a large amount of entanglement in the initial state prevents the algorithm from achieving optimal performance. We also apply our methods to quantum computation with mixed states, proving that pseudopure states achieve optimal performance for a given purity in the Bernstein-Vazirani algorithm. We further investigate quantum resources in the one clean qubit model, showing that the model can exhibit speedup over any known classical algorithm even with arbitrary little amount of multipartite entanglement, general quantum correlations, and coherence.