论文标题
通过输出驱动的反馈系统控制技术发现的秀丽隐杆线虫线虫的有效药物组合
Effective drug combination for Caenorhabditis elegans nematodes discovered by output-driven feedback system control technique
论文作者
论文摘要
来自寄生虫(或round虫)的感染导致了人类和牲畜的重大疾病负担和生产力损失。当今可用来治疗这些感染的驱虫药物(或抗信毒药物)数量有限,因为寄生虫中的多药耐药性成为全球健康挑战,因此迅速失去了疗效。我们提出了一种工程方法,以发现一种驱虫药的组合,该药物组合比四种单独的药物更有效地杀死野生型Caenorhabditis elegans蠕虫。在实验中,自由游泳的单蠕虫被封闭在微流体药物环境中,以评估蠕虫运动的质心速度和轨道曲率。在分析了每次迭代中的行为数据之后,反馈系统控制(FSC)方案用于预测新的药物组合进行测试。通过差异进化搜索,达到了获胜的药物组合,从而产生最小的质心速度和高轨道曲率,同时需要每种药物小于其EC50浓度。 FSC方法是无模型的,不需要有关药物药理学,信号通路或动物生物学的任何信息。为了打击多药耐药性,此处介绍的方法适用于在秀丽隐杆线虫,寄生虫和其他小型模型生物体上发现可用的驱虫药的新有效组合。
Infections from parasitic nematodes (or roundworms) contribute to a significant disease burden and productivity losses for humans and livestock. The limited number of anthelmintics (or antinematode drugs) available today to treat these infections are rapidly losing their efficacy as multidrug resistance in parasites becomes a global health challenge. We propose an engineering approach to discover an anthelmintic drug combination that is more potent at killing wild-type Caenorhabditis elegans worms than four individual drugs. In the experiment, freely swimming single worms are enclosed in microfluidic drug environments to assess the centroid velocity and track curvature of worm movements. After analyzing the behavioral data in every iteration, the feedback system control (FSC) scheme is used to predict new drug combinations to test. Through a differential evolutionary search, the winning drug combination is reached that produces minimal centroid velocity and high track curvature, while requiring each drug in less than their EC50 concentrations. The FSC approach is model-less and does not need any information on the drug pharmacology, signaling pathways, or animal biology. Toward combating multidrug resistance, the method presented here is applicable to the discovery of new potent combinations of available anthelmintics on C. elegans, parasitic nematodes, and other small model organisms.