论文标题

网络传染的动态干预措施

Dynamic Interventions for Networked Contagions

论文作者

Papachristou, Marios, Banerjee, Siddhartha, Kleinberg, Jon

论文摘要

我们研究设计动态干预政策的问题,以最大程度地减少金融网络中的网络默认值。正式地,我们考虑了著名的Eisenberg-Noe财务网络负债模型的动态版本,并使用它来研究外部干预政策的设计。我们的控制器在每回合中都有固定的资源预算,可以使用它来最大程度地减少网络中需求/供应冲击的影响。我们将最佳干预问题作为马尔可夫决策过程,并展示如何利用问题结构来有效计算连续干预措施的最佳干预策略,并为离散干预提供近似算法。我们认为,超越金融网络,我们的模型可以通过与网络相互依存关系捕获更广泛的动态需求/供应设置类别的动态网络干预。为了证明这一点,我们将干预算法应用于各种应用程序领域,包括乘车共享,在线交易平台和具有代理机动性的财务网络。在每种情况下,我们都会研究节点中心性与干预强度之间的关系,以及最佳干预措施的公平特性。

We study the problem of designing dynamic intervention policies for minimizing networked defaults in financial networks. Formally, we consider a dynamic version of the celebrated Eisenberg-Noe model of financial network liabilities and use this to study the design of external intervention policies. Our controller has a fixed resource budget in each round and can use this to minimize the effect of demand/supply shocks in the network. We formulate the optimal intervention problem as a Markov Decision Process and show how we can leverage the problem structure to efficiently compute optimal intervention policies with continuous interventions and provide approximation algorithms for discrete interventions. Going beyond financial networks, we argue that our model captures dynamic network intervention in a much broader class of dynamic demand/supply settings with networked inter-dependencies. To demonstrate this, we apply our intervention algorithms to various application domains, including ridesharing, online transaction platforms, and financial networks with agent mobility. In each case, we study the relationship between node centrality and intervention strength, as well as the fairness properties of the optimal interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源