论文标题
用变压器学习通用超参数优化器
Towards Learning Universal Hyperparameter Optimizers with Transformers
论文作者
论文摘要
先前实验的元学习超参数优化(HPO)算法是一种有前途的方法,是提高来自相似分布的目标功能优化效率的优化效率。但是,现有方法仅限于从共享相同的超参数集的实验中学习。在本文中,我们介绍了Optformer,这是第一个基于文本的变压器HPO框架,该框架在对野外的大量调整数据进行培训时,为共同学习政策和功能预测提供了通用的端到端界面,例如Google的Vizier数据库,这是世界上最大的HPO数据集之一。我们的广泛实验表明,Optformer可以同时模仿7种不同的HPO算法,可以通过其功能不确定性估计来进一步改进。与高斯工艺相比,Optformer还学习了超参数响应函数的鲁棒先验分布,从而可以提供更准确,更好的校准预测。这项工作铺平了通往未来扩展的途径,以训练基于变压器的模型作为一般HPO优化器。
Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild, such as Google's Vizier database, one of the world's largest HPO datasets. Our extensive experiments demonstrate that the OptFormer can simultaneously imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.