论文标题
顺序测量,TQFT和TQNNS
Sequential measurements, TQFTs, and TQNNs
论文作者
论文摘要
我们介绍了在无标度体系结构中实现通用量子信息的新颖方法。对于给定的可观察系统,我们展示了如何将观察结果视为由源自该系统界定的全息屏幕的测量运算符引起的有限位字符串。在此框架中,针对定义的参考帧的确定系统测量通过语义调节的信息流通过有限的二进制型barwise-seligman分类器的分布式系统表示。具体而言,我们从有限分类器集的锥体cocone图(CCCD)类别中构造了一个函子,并将其构造为希尔伯特空间有限的共同体类别。我们表明有限的CCCD提供了有限量子参考框架(QRF)的一般表示。因此,构造的函子显示了顺序有限测量如何诱导TQFT。唯一的要求是,按顺序以序列本身满足贝叶斯连贯性,因此分配的概率满足了Kolmogorov公理。我们扩展了分析,因此开发了拓扑量子神经网络(TQNNS),该网络可以通过TQFTS幅度控制的量子神经2复合物(TQN2C)的功能演化来实现机器学习,并诉诸于Atiyah-Singer Theorems,以通过TQN2CS对拓扑数据进行分类。然后,我们评论CCCD的颤抖表示和广义自旋网络,这是TQNNS和TQFTS的Hilbert空间的基础。我们最终回顾了该框架在固态物理学中的潜在实现,并建议对量子模拟和生物信息处理的应用。
We introduce novel methods for implementing generic quantum information within a scale-free architecture. For a given observable system, we show how observational outcomes are taken to be finite bit strings induced by measurement operators derived from a holographic screen bounding the system. In this framework, measurements of identified systems with respect to defined reference frames are represented by semantically-regulated information flows through distributed systems of finite sets of binary-valued Barwise-Seligman classifiers. Specifically, we construct a functor from the category of cone-cocone diagrams (CCCDs) over finite sets of classifiers, to the category of finite cobordisms of Hilbert spaces. We show that finite CCCDs provide a generic representation of finite quantum reference frames (QRFs). Hence the constructed functor shows how sequential finite measurements can induce TQFTs. The only requirement is that each measurement in a sequence, by itself, satisfies Bayesian coherence, hence that the probabilities it assigns satisfy the Kolmogorov axioms. We extend the analysis so develop topological quantum neural networks (TQNNs), which enable machine learning with functorial evolution of quantum neural 2-complexes (TQN2Cs) governed by TQFTs amplitudes, and resort to the Atiyah-Singer theorems in order to classify topological data processed by TQN2Cs. We then comment about the quiver representation of CCCDs and generalized spin-networks, a basis of the Hilbert spaces of both TQNNs and TQFTs. We finally review potential implementations of this framework in solid state physics and suggest applications to quantum simulation and biological information processing.