论文标题

Swinvrnn:通过学习分布扰动的数据驱动的集合预测模型

SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned Distribution Perturbation

论文作者

Hu, Yuan, Chen, Lei, Wang, Zhibin, Li, Hao

论文摘要

与传统的数值天气预测(NWP)型号相比,对于中等范围的天气预测的数据驱动方法对于它们的快速推理速度的预测非常有前途,但是它们的预测准确性几乎不符合最先进的运行ECMWF集成预测系统(IFS)模型。以前的数据驱动的尝试使用一些简单的扰动方法(例如初始条件扰动和蒙特卡洛辍学)实现集合预测。但是,它们主要遭受不令人满意的合奏性能,这可以说是施加扰动的亚最佳方式。我们提出了一个基于Swin Transformer的变性复发性神经网络(SWINVRNN),这是一种随机天气预测模型,将Swinrnn预测变量与扰动模块相结合。 Swinrnn被设计为基于Swin Transformer的复发神经网络,该网络可确定性地预测未来状态。此外,为了建模预测的随机性,我们按照变异自动编码器范式设计了一个扰动模块,以从数据中学习一个时间变化的随机潜在变量的多变量高斯分布。通过扰动利用从学习分布采样的噪声的模型特征来轻松实现集合预测。我们还比较了整体预测的四类扰动方法,即固定的分布扰动,学习的分布扰动,MC脱落和多模型集合。 WeatherBench数据集上的比较显示了使用我们的Swinvrnn模型的学习分布扰动方法可实现卓越的预测准确性和由于两个目标的关节优化而导致的合理集合扩散。更值得注意的是,Swinvrnn在2-M温度和6小时的总降水时间内超过了运行IF,最多五天。

Data-driven approaches for medium-range weather forecasting are recently shown extraordinarily promising for ensemble forecasting for their fast inference speed compared to traditional numerical weather prediction (NWP) models, but their forecast accuracy can hardly match the state-of-the-art operational ECMWF Integrated Forecasting System (IFS) model. Previous data-driven attempts achieve ensemble forecast using some simple perturbation methods, like initial condition perturbation and Monte Carlo dropout. However, they mostly suffer unsatisfactory ensemble performance, which is arguably attributed to the sub-optimal ways of applying perturbation. We propose a Swin Transformer-based Variational Recurrent Neural Network (SwinVRNN), which is a stochastic weather forecasting model combining a SwinRNN predictor with a perturbation module. SwinRNN is designed as a Swin Transformer-based recurrent neural network, which predicts future states deterministically. Furthermore, to model the stochasticity in prediction, we design a perturbation module following the Variational Auto-Encoder paradigm to learn multivariate Gaussian distributions of a time-variant stochastic latent variable from data. Ensemble forecasting can be easily achieved by perturbing the model features leveraging noise sampled from the learned distribution. We also compare four categories of perturbation methods for ensemble forecasting, i.e. fixed distribution perturbation, learned distribution perturbation, MC dropout, and multi model ensemble. Comparisons on WeatherBench dataset show the learned distribution perturbation method using our SwinVRNN model achieves superior forecast accuracy and reasonable ensemble spread due to joint optimization of the two targets. More notably, SwinVRNN surpasses operational IFS on surface variables of 2-m temperature and 6-hourly total precipitation at all lead times up to five days.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源