论文标题
像素游戏:红外小目标分割作为纳什平衡
PixelGame: Infrared small target segmentation as a Nash equilibrium
论文作者
论文摘要
红外小目标分割(IST)的关键挑战是平衡假阴性像素(FNS)和假阳性像素(FPS)。传统方法通过加权总和将FN和FPS组合为一个目标,并且优化过程由一个参与者决定。最小化具有相同策略的FN和FP会导致对抗决策。为了解决这个问题,我们从IST的新角度提出了一个竞争性的游戏框架(PixelGame)。在PixelGame中,FNS和FPS由不同的玩家控制,其目标是最大程度地减少自己的实用程序功能。 FNS-player和FPS播放器的设计具有不同的策略:一种是最小化FN,另一个是最小化FPS。公用事业功能推动了两个参与者在竞争中的演变。我们将PixelGame的NASH平衡视为最佳解决方案。此外,我们提出了最大信息调制(MIM),以突出显示焦油的信息。 MIM有效地集中在包括小目标的显着区域。在两个标准公共数据集上进行了广泛的实验证明了我们方法的有效性。与其他最先进的方法相比,我们的方法在F1测量(F1)和联合(IOU)的交集方面取得了更好的性能。
A key challenge of infrared small target segmentation (ISTS) is to balance false negative pixels (FNs) and false positive pixels (FPs). Traditional methods combine FNs and FPs into a single objective by weighted sum, and the optimization process is decided by one actor. Minimizing FNs and FPs with the same strategy leads to antagonistic decisions. To address this problem, we propose a competitive game framework (pixelGame) from a novel perspective for ISTS. In pixelGame, FNs and FPs are controlled by different player whose goal is to minimize their own utility function. FNs-player and FPs-player are designed with different strategies: One is to minimize FNs and the other is to minimize FPs. The utility function drives the evolution of the two participants in competition. We consider the Nash equilibrium of pixelGame as the optimal solution. In addition, we propose maximum information modulation (MIM) to highlight the tar-get information. MIM effectively focuses on the salient region including small targets. Extensive experiments on two standard public datasets prove the effectiveness of our method. Compared with other state-of-the-art methods, our method achieves better performance in terms of F1-measure (F1) and the intersection of union (IoU).