论文标题

最差的案例紧密下限保证零射击学习的属性

Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with Attributes

论文作者

Mazzetto, Alessio, Menghini, Cristina, Yuan, Andrew, Upfal, Eli, Bach, Stephen H.

论文摘要

我们对具有属性的零拍学习进行了严格的数学分析。在这种情况下,目标是在没有训练数据的情况下标记新型类别,仅用于属性的检测器以及对这些属性如何与目标类别相关的描述,称为类属性矩阵。我们在最佳地图的最坏情况下,即使使用完美的属性检测器,我们开发了第一个非平凡的下限。下边界根据可用信息(类属性矩阵)来表征零摄像问题的理论固有难度,并且该界限实际上可以从中计算。我们的下限很紧,因为我们表明我们总是可以找到一个从属性到类的随机地图,其预期误差在下限的值上限为上限。我们表明,我们的分析可以预测标准的零击方法在实践中的表现,包括哪些类可能会与其他类混淆。

We develop a rigorous mathematical analysis of zero-shot learning with attributes. In this setting, the goal is to label novel classes with no training data, only detectors for attributes and a description of how those attributes are correlated with the target classes, called the class-attribute matrix. We develop the first non-trivial lower bound on the worst-case error of the best map from attributes to classes for this setting, even with perfect attribute detectors. The lower bound characterizes the theoretical intrinsic difficulty of the zero-shot problem based on the available information -- the class-attribute matrix -- and the bound is practically computable from it. Our lower bound is tight, as we show that we can always find a randomized map from attributes to classes whose expected error is upper bounded by the value of the lower bound. We show that our analysis can be predictive of how standard zero-shot methods behave in practice, including which classes will likely be confused with others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源