论文标题

与合作移动边缘网络联合学习的可扩展和低延迟的联合学习

Scalable and Low-Latency Federated Learning with Cooperative Mobile Edge Networking

论文作者

Zhang, Zhenxiao, Gao, Zhidong, Guo, Yuanxiong, Gong, Yanmin

论文摘要

联合学习(FL)可以实现协作模型培训,而无需集中数据。但是,传统的FL框架是基于云的,并且遭受了较高的通信延迟。另一方面,基于边缘的FL框架依赖于与移动基站用于模型聚合的边缘服务器的Edge服务器的通信延迟较低,但由于边缘服务器的覆盖范围有限,模型准确性降低了。鉴于高准确性但高延迟的基于云的FL和低延迟性但基于低准确的边缘的FL,本文提出了一个基于合作移动边缘网络的新FL框架,称为合作联盟联盟边缘学习(CFEL),以启用高级智能和移动边缘网络的低位智力分布。考虑到CFEL独特的两层网络体系结构,一种新型联合优化方法称为合作边缘的联合平均(CE-FEDAVG)(CE-FEDAVG),进一步开发了,其中,每个边缘服务器都可以在其自身覆盖范围内的设备之间进行协作模型培训,并与其他边缘服务器一起通过Edge Servers进行共享的全球模型,以通过Exsentralized Consensus Casensus学习共享的全球模型。基于基准数据集的实验结果表明,与先前的FL框架相比,CFEL可以大大减少训练时间以实现目标模型的准确性。

Federated learning (FL) enables collaborative model training without centralizing data. However, the traditional FL framework is cloud-based and suffers from high communication latency. On the other hand, the edge-based FL framework that relies on an edge server co-located with mobile base station for model aggregation has low communication latency but suffers from degraded model accuracy due to the limited coverage of edge server. In light of high accuracy but high-latency cloud-based FL and low-latency but low-accuracy edge-based FL, this paper proposes a new FL framework based on cooperative mobile edge networking called cooperative federated edge learning (CFEL) to enable both high-accuracy and low-latency distributed intelligence at mobile edge networks. Considering the unique two-tier network architecture of CFEL, a novel federated optimization method dubbed cooperative edge-based federated averaging (CE-FedAvg) is further developed, wherein each edge server both coordinates collaborative model training among the devices within its own coverage and cooperates with other edge servers to learn a shared global model through decentralized consensus. Experimental results based on benchmark datasets show that CFEL can largely reduce the training time to achieve a target model accuracy compared with prior FL frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源