论文标题
NaturalProver:使用语言模型的扎根数学证明生成
NaturalProver: Grounded Mathematical Proof Generation with Language Models
论文作者
论文摘要
定理用自然数学语言证明 - 人类使用的象征和自然语言的混合 - 在数学进步和教育中起着核心作用,并测试了推理的方面,这些方面是智力的核心。然而,它仍然对现代生成模型充满了反应。我们在两个新一代任务上研究大规模语言模型:在数学证明中提出下一步和全面证明。我们开发了NaturalProver,该语言模型通过根据背景参考(例如被检索或提供人提供的定理和定义)来生成证据,并且可以选择地通过约束解码来强制执行其存在。根据大学级数学专业的人类评估,关于自然素基准的定理,NaturalProver提高了下一步建议的质量和对微调GPT-3的证明的质量。 NaturalProver能够证明某些需要简短(2-6步)证明的定理,并提供下一步的建议,这些建议在40%的时间内被评为正确且有用,这是我们所知,使用神经语言模型对这些功能进行了首次演示。
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.