论文标题

$ \ mathbb {r}^{n} $的$ \ mathbb的色数

The Chromatic Number of $\mathbb{R}^{n}$ with Multiple Forbidden Distances

论文作者

Naslund, Eric

论文摘要

令$ a \ subset \ mathbb {r} _ {> 0} $为有限的距离集,让$ g_ {a}(\ m athbb {r}^{n})$是带有顶点的图形,带有顶点的图形, $ \ {(x,y)\ in \ mathbb {r}^{n}:\ \ | x-y \ | _ {2} \ in a \} $,然后让$χ(\ mathbb {r}^{n},a)=χ\ left(g_ {a}(\ mathbb {r}^{n})\ right)$。 Erds询问了$ M $ distance色度编号的增长率\ [\barχ(\ Mathbb {r}^{n}; m)= \ max_ {| a | = m}χ(\ MathBb {r}^{n},a)。 \]我们改善了$ \barχ(\ Mathbb {r}^{n}; m)$的最佳现有下限,并证明\ [\ [\ [\ barBB {\ Mathbb {r}^{n} {n}; m)\ geq \ geq \ left(γ__\ sqrt \ sqrt \ sqrt {m+1}+1}+o(where) $γ_χ= 0.79983 \点$是一个明确的常数。我们的完整结果更为笼统,适用于此图中的集团。令$χ_{k}(g)$表示颜色$ g $所需的最小颜色数量,这样就没有颜色包含$(k+1)$ - clique,然后让$ \ \barχ_{k {k {k {\ mathbb {r}^{n}^{n}; m)$表示最大的价值这是最大的距离$ m $ m $ m $ m $ m $ m $ m的最大价值。使用分区级别方法,我们表明\ [\barχ_{k}(\ Mathbb {r}^{n}; m)> \ left(γ_\ \ sqrt {\ frac {m+1} {m+1} {k}}}}}}}}+o(1)+O(1)+(1)\ right)^n n} {n}。 \]

Let $A\subset\mathbb{R}_{>0}$ be a finite set of distances, and let $G_{A}(\mathbb{R}^{n})$ be the graph with vertex set $\mathbb{R}^{n}$ and edge set $\{(x,y)\in\mathbb{R}^{n}:\ \|x-y\|_{2}\in A\}$, and let $χ(\mathbb{R}^{n},A)=χ\left(G_{A}(\mathbb{R}^{n})\right)$. Erdős asked about the growth rate of the $m$-distance chromatic number \[ \barχ(\mathbb{R}^{n};m)=\max_{|A|=m}χ(\mathbb{R}^{n},A). \] We improve the best existing lower bound for $\barχ(\mathbb{R}^{n};m)$, and show that \[ \barχ(\mathbb{R}^{n};m)\geq\left(Γ_χ\sqrt{m+1}+o(1)\right)^{n} \] where $Γ_χ=0.79983\dots$ is an explicit constant. Our full result is more general, and applies to cliques in this graph. Let $χ_{k}(G)$ denote the minimum number of colors needed to color $G$ so that no color contains a $(k+1)$-clique, and let $\barχ_{k}(\mathbb{R}^{n};m)$ denote the largest value this takes for any distance set of size $m$ . Using the Partition Rank Method, we show that \[ \barχ_{k}(\mathbb{R}^{n};m)>\left(Γ_χ\sqrt{\frac{m+1}{k}}+o(1)\right)^{n}. \]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源