论文标题
遥远的跨北河区域中自我磨碎的行星磁盘的动力演变
Dynamical evolution of a self-gravitating planetesimal disk in the distant trans-Neptunian region
论文作者
论文摘要
目标。我们研究了由巨型行星和大型行星磁盘组成的系统的动力学演变,该系统在太阳系的年龄范围内。这项研究中提到的主要问题是,由于行星扰动的综合作用和磁盘的自我实现,遥远的跨北河对象是否可能产生。方法。我们对巨型行星和巨大的行星外盘之间的重力相互作用进行了一系列完整的N体数值模拟。结果。我们的模拟表明,巨型行星和巨大的行星的集体重力在跨广泛的初始磁盘质量范围内产生遥远的跨纳普族对象。整个太阳系年龄段生存的大多数物体具有Q> 40 au的围栏距离。在该区域中,对于半轴轴a> 150 au的物体,偏心率降低的趋势和增加的围栏距离。遥远的行星之间的世俗共振在增加其周围距离方面起着重要作用。这解释了SEDNA型物体的起源。在我们与太阳系年龄的整合中,我们以高和低的围栏纵向聚类和低簇进行了注册,以及对具有q> 40 au的物体的围盘的参数,a> 150 au。我们模型中倾斜的结果分布以及遥远跨核对象的倾斜的观察到的分布的平均值相似,约为20度。结论。遥远的跨北河对象是模型中的自然结果,包括迁移的巨型行星和自我磨碎的行星磁盘。
Aims. We study the dynamical evolution of a system consisting of the giant planets and a massive planetesimal disk over the age of the Solar System. The main question addressed in this study is whether distant trans-Neptunian objects could have come about as a result of the combined action of planetary perturbations and the self-gravity of the disk. Methods. We carried out a series of full N-body numerical simulations of gravitational interactions between the giant planets and a massive outer disk of planetesimals. Results. Our simulations show that the collective gravity of the giant planets and massive planetesimals produces distant trans-Neptunian objects across a wide range of the initial disk mass. The majority of objects that survive up through the age of the Solar System have perihelion distances of q > 40 au. In this region, there is a tendency toward a slow decrease in eccentricities and an increase in perihelion distances for objects with semimajor axes a > 150 au. Secular resonances between distant planetesimals play a major role in increasing their perihelion distances. This explains the origin of Sedna-type objects. In our integrations for the age of the Solar System, we registered times with both high and low clustering of longitudes of perihelion and arguments of perihelion for objects with q > 40 au, a > 150 au. The resulting distribution of inclinations in our model and the observed distribution of inclinations for distant trans-Neptunian objects have similar average values of around 20 degrees. Conclusions. Distant trans-Neptunian objects are a natural consequence in the models that include migrating giant planets and a self-gravitating planetesimal disk.