论文标题

D $^\ text {2} $ uf:用于压缩光谱图像融合的深编码孔设计和展开算法

D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for Compressive Spectral Image Fusion

论文作者

Jacome, Roman, Bacca, Jorge, Arguello, Henry

论文摘要

压缩光谱成像(CSI)引起了极大的关注,因为它采用合成孔将空间和光谱信息编纂,仅感知3D光谱图像的2D投影。但是,由于技术限制,这些光学体系结构在重建图像的空间和光谱分辨率之间遭受了权衡。为了克服这个问题,压缩光谱图像融合(CSIF)采用了两种CSI体系结构的预测测量,并采用不同的分辨率来估计高空间高光谱分辨率。这项工作介绍了低空间高光谱分辨率编码的光圈快照光谱成像仪(CASSI)体系结构和高空间低光谱分辨率多光谱颜色滤清器(MCFA)系统的压缩测量融合。与以前的CSIF作品不同,本文提出了以端到端(E2E)方式对传感体系结构和重建网络的联合优化。可训练的光学参数是CASSI中的编码光圈(CA)和MCFA系统中的彩色编码光圈,采用Sigmoid激活功能和正则化功能,以鼓励在实现目的的可训练变量上二进制二进制值。此外,制定了一个基于展开的网络,该网络灵感来自乘数的交替方向方法(ADMM)优化,以解决重建步骤和收购系统共同设计。最后,在每个展开层的末尾采用了空间光谱启发的损耗函数,以增加展开网络的收敛性。所提出的方法的表现优于先前的CSIF方法,实验结果通过实际测量验证了该方法。

Compressive spectral imaging (CSI) has attracted significant attention since it employs synthetic apertures to codify spatial and spectral information, sensing only 2D projections of the 3D spectral image. However, these optical architectures suffer from a trade-off between the spatial and spectral resolution of the reconstructed image due to technology limitations. To overcome this issue, compressive spectral image fusion (CSIF) employs the projected measurements of two CSI architectures with different resolutions to estimate a high-spatial high-spectral resolution. This work presents the fusion of the compressive measurements of a low-spatial high-spectral resolution coded aperture snapshot spectral imager (CASSI) architecture and a high-spatial low-spectral resolution multispectral color filter array (MCFA) system. Unlike previous CSIF works, this paper proposes joint optimization of the sensing architectures and a reconstruction network in an end-to-end (E2E) manner. The trainable optical parameters are the coded aperture (CA) in the CASSI and the colored coded aperture in the MCFA system, employing a sigmoid activation function and regularization function to encourage binary values on the trainable variables for an implementation purpose. Additionally, an unrolling-based network inspired by the alternating direction method of multipliers (ADMM) optimization is formulated to address the reconstruction step and the acquisition systems design jointly. Finally, a spatial-spectral inspired loss function is employed at the end of each unrolling layer to increase the convergence of the unrolling network. The proposed method outperforms previous CSIF methods, and experimental results validate the method with real measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源