论文标题

$ \ mathrm {ro}(\ mathbb t)$ - 分级$ \ mathrm {tf} $ of PerfectOid戒指

$\mathrm{RO}(\mathbb T)$-graded $\mathrm{TF}$ of perfectoid rings

论文作者

Sulyma, Yuri J. F.

论文摘要

对于PerfectOid Ring $ r $,我们计算完整的$ \ mathrm {ro}(\ mathbb t)$ - 分级戒指$ \ mathrm {tf} _ \ bigStar(r; \ Mathbf z_p)$。这扩展并简化了Gerhardt和Angeltveit-Gerhardt的工作。甚至在学位上,我们都会找到一个$ \ mathrm {ru}(\ mathbb t)$ - 分级版本的bökstedt周期性,在完美的$ \ mathbf f_p $ -algebras的情况下,还有一些其他类。在奇怪的程度上,我们发现非常复杂且相当神秘的扭转。我们还讨论了$ \ mathrm {ro}(\ mathbb t)$ - 分级同型tambara functors $ \lundeslineπ_\ bigstar \ bigStar \ mathrm {thh}(r; \ m; \ mathbf z_p)$。

For a perfectoid ring $R$, we compute the full $\mathrm{RO}(\mathbb T)$-graded ring $\mathrm{TF}_\bigstar(R;\mathbf Z_p)$. This extends and simplifies work of Gerhardt and Angeltveit-Gerhardt. In even degrees, we find an $\mathrm{RU}(\mathbb T)$-graded version of Bökstedt periodicity, with some additional classes in the case of perfect $\mathbf F_p$-algebras. In odd degrees, we find extremely intricate and rather mysterious torsion. We also discuss the $\mathrm{RO}(\mathbb T)$-graded homotopy Tambara functors $\underlineπ_\bigstar\mathrm{THH}(R;\mathbf Z_p)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源