论文标题

Hipal:使用电子健康记录中的活动日志的医师倦怠预测的深度框架

HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

论文作者

Liu, Hanyang, Lou, Sunny S., Warner, Benjamin C., Harford, Derek R., Kannampallil, Thomas, Lu, Chenyang

论文摘要

倦怠是影响近一半医疗工作者的重大公共卫生问题。本文介绍了基于电子健康记录(EHR)活动日志的第一个端到端深度学习框架,用于预测医师的倦怠,即任何EHR系统中可用的医师工作活动的数字痕迹。与仅依靠调查进行倦怠测量的先前方法相反,我们的框架直接从大规模的临床医生活动日志中了解了医师行为的深刻表示,以预测倦怠。我们提出了基于活动日志(HIPAL)的层次倦怠预测,其特征是针对活动日志量身定制的预先培训的时间依赖的活动嵌入机制和一个分层预测模型,该模型反映了临床医生活动日志的自然等级结构,并捕获了医生在短期和长期级别上的临床倦怠风险。为了利用大量未标记的活动日志,我们提出了一个半监督的框架,该框架学会将从未标记的临床医生活动中提取的知识转移到基于HIPAL的预测模型中。从EHR收集的1500万个临床医生活动日志的实验证明了我们拟议的框架在医师倦怠和培训效率方面的预测框架比最新方法的优势。

Burnout is a significant public health concern affecting nearly half of the healthcare workforce. This paper presents the first end-to-end deep learning framework for predicting physician burnout based on electronic health record (EHR) activity logs, digital traces of physician work activities that are available in any EHR system. In contrast to prior approaches that exclusively relied on surveys for burnout measurement, our framework directly learns deep representations of physician behaviors from large-scale clinician activity logs to predict burnout. We propose the Hierarchical burnout Prediction based on Activity Logs (HiPAL), featuring a pre-trained time-dependent activity embedding mechanism tailored for activity logs and a hierarchical predictive model, which mirrors the natural hierarchical structure of clinician activity logs and captures physicians' evolving burnout risk at both short-term and long-term levels. To utilize the large amount of unlabeled activity logs, we propose a semi-supervised framework that learns to transfer knowledge extracted from unlabeled clinician activities to the HiPAL-based prediction model. The experiment on over 15 million clinician activity logs collected from the EHR at a large academic medical center demonstrates the advantages of our proposed framework in predictive performance of physician burnout and training efficiency over state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源