论文标题
Birkhoff-James正交性及其在某些序列空间中的本地对称性
Birkhoff-James Orthogonality and Its Local Symmetry in Some Sequence Spaces
论文作者
论文摘要
我们研究Birkhoff-James正交性及其本地对称性在某些序列空间中,即$ \ ell_p,$ $ 1 \ leq p \ leq p \ leq \ infty $,$ p \ neq2 $,$ c $,$ c $,$ c_0 $和$ c_0 $和$ c_ {00} $。利用Birkhoff-James正交性的局部对称性的表征,我们将每个空间的异构体表征在自身上,并在序列空间上获得Banach-Lamperti定理的banach-Lamperti定理。
We study Birkhoff-James orthogonality and its local symmetry in some sequence spaces namely $\ell_p,$ for $1\leq p\leq\infty$, $p\neq2$, $c$, $c_0$ and $c_{00}$. Using the characterization of the local symmetry of Birkhoff-James orthogonality, we characterize isometries of each of these spaces onto itself and obtain the Banach-Lamperti theorem for onto operators on the sequence spaces.