论文标题

螺栓:fused窗口变压器用于fMRI时间序列分析

BolT: Fused Window Transformers for fMRI Time Series Analysis

论文作者

Bedel, Hasan Atakan, Şıvgın, Irmak, Dalmaz, Onat, Dar, Salman Ul Hassan, Çukur, Tolga

论文摘要

深度学习模型已使高维功能MRI(fMRI)数据分析的性能飞跃。然而,许多以前的方法对各种时间尺度的上下文表示非常敏感。在这里,我们提出了一种血氧级依赖性变压器模型的螺栓,用于分析多变量fMRI时间序列。螺栓利用了一系列具有新型融合窗户注意机制的变压器编码器。编码是在时间序列的时间序列窗口上执行的,以捕获本地表示。为了暂时整合信息,在每个窗口中的基本令牌和来自相邻窗口的边缘令牌之间计算跨窗口的关注。为了逐渐从本地表示,窗口重叠的程度,从而在整个级联反应中逐渐增加。最后,采用一种新颖的跨窗口正规化来使整个时间序列之间的高级分类特征对齐。大规模公共数据集的全面实验证明了螺栓与最先进的方法的出色性能。此外,解释性分析以确定具有里程碑意义的时间点和区域,这些时间点和区域最大程度地促进模型的决策证实了文献中突出的神经科学发现。

Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源