论文标题
三种风味中微子振荡中的Geuine Tripartite纠缠
Geuine tripartite entanglement in three-flavor neutrino oscillations
论文作者
论文摘要
违反leggett-garg不平等现象测试了跨宏观距离的中微子振荡(NOS)的量子。可以使用量子资源理论的工具来量化量子。最近,一种新的真正的三方纠缠措施[S. B. Xie等人,物理。莱特牧师。 127,040403(2021)](同意填充)被定义为满足所有真正的多部分纠缠条件的并发三角形区域的平方根。与其他现有三方措施相比,它具有几个优势。在这里,我们专注于使用并发填充来量化三种味道编号的三方纠缠。对于实验观察到的电子抗振荡,同时填充可以达到其最高$ 0.89 $,但不能用于MUON抗肿瘤振荡。在这两种情况下,我们都将其性能与其他三方纠缠措施进行了比较,包括广义几何测度(GGM),三分之三$π$的范围和真正的多方同意(GMC),在中微子传播中,并因此表明,同意填充填充量最多。此外,同意填充和三$π$纠缠始终是光滑的,而GGM和GMC措施具有多个尖峰。三种味道NOS的量子性的真正三方定量代表了中微子在量子信息处理中进一步应用的第一步。
The violation of Leggett-Garg inequalities tested the quantumness of neutrino oscillations (NOs) across macroscopic distances. The quantumness can be quantified by using the tools of the quantum resource theories. Recently, a new genuine tripartite entanglement measure [S. B. Xie et al., Phys. Rev. Lett. 127, 040403 (2021)], concurrence fill, is defined as the square root of the area of the concurrence triangle satisfying all genuine multipartite entanglement conditions. It has several advantages compared to other existing tripartite measures. Here, we focus on using concurrence fill to quantify the tripartite entanglement in three-flavor NOs. Concurrence fill can reach its maximum $0.89$ for the experimentally-observed electron antineutrino oscillations, but it cannot for the muon antineutrino oscillations. In both cases, we compare its performance with other three tripartite entanglement measures, including the generalized geometric measure (GGM), the three-$π$ entanglement, and the genuinely multipartite concurrence (GMC), in the neutrino propagation, and accordingly show that concurrence fill contains the most quantum resource. Furthermore, concurrence fill and the three-$π$ entanglement are always smooth, while GGM and GMC measures have several sharp peaks. The genuine tripartite quantification of the quantumness of three-flavor NOs represents the first step towards the further potential application of neutrinos on quantum information processing.