论文标题

Alita:长期自治的大规模增量数据集

ALITA: A Large-scale Incremental Dataset for Long-term Autonomy

论文作者

Yin, Peng, Zhao, Shiqi, Ge, Ruohai, Cisneros, Ivan, Fu, Ruijie, Zhang, Ji, Choset, Howie, Scherer, Sebastian

论文摘要

对于长期自治,大多数位置识别方法主要在简化的方案或模拟数据集上进行评估,该数据集无法提供可靠的证据来评估当前同时定位和映射的准备就绪(SLAM)。在本文中,我们提供了一个长期的位置识别数据集,用于在大规模动态环境下用于移动定位。该数据集包括一个校园规模的轨道和城市规模的轨道:1)校园轨道聚焦于长期属性,我们在10个轨迹上记录了LiDAR设备和全向相机,并且每个轨迹在变化照明条件下都重复记录8次。 2)城市轨道聚焦大型物业,我们将激光雷达设备安装在车辆上,并穿过120公里的轨迹,其中包含开放的街道,居民区,自然地形等。它们包括城市环境中各种场景的200小时的原始数据。每个轨迹都提供了两个轨道的地面真实位置,这是从全球位置系统中获得的,具有额外的一般基于ICP的点云细化。为了简化评估程序,我们还为Python-API提供了一组地点识别指标,以快速加载我们的数据集并根据不同的方法评估识别性能。该数据集的目标是找到具有高位置识别精度和鲁棒性的方法,并提供长期自治的实际机器人系统。可以从https://github.com/metaslam/alita访问数据集和提供的工具。

For long-term autonomy, most place recognition methods are mainly evaluated on simplified scenarios or simulated datasets, which cannot provide solid evidence to evaluate the readiness for current Simultaneous Localization and Mapping (SLAM). In this paper, we present a long-term place recognition dataset for use in mobile localization under large-scale dynamic environments. This dataset includes a campus-scale track and a city-scale track: 1) the campus-track focuses the long-term property, we record LiDAR device and an omnidirectional camera on 10 trajectories, and each trajectory are repeatly recorded 8 times under variant illumination conditions. 2) the city-track focuses the large-scale property, we mount the LiDAR device on the vehicle and traversing through a 120km trajectories, which contains open streets, residential areas, natural terrains, etc. They includes 200 hours of raw data of all kinds scenarios within urban environments. The ground truth position for both tracks are provided on each trajectory, which is obtained from the Global Position System with an additional General ICP based point cloud refinement. To simplify the evaluation procedure, we also provide the Python-API with a set of place recognition metrics is proposed to quickly load our dataset and evaluate the recognition performance against different methods. This dataset targets at finding methods with high place recognition accuracy and robustness, and providing real robotic system with long-term autonomy. The dataset and the provided tools can be accessed from https://github.com/MetaSLAM/ALITA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源