论文标题

纠缠见证的量子变异学习

Quantum variational learning for entanglement witnessing

论文作者

Scala, Francesco, Mangini, Stefano, Macchiavello, Chiara, Bajoni, Daniele, Gerace, Dario

论文摘要

最近引入了几项建议,以实现量子机学习(QML)算法,以分析采用各种学习手段的经典数据集。但是,到目前为止,通过这些技术对量子数据的表征和分析进行了有限的工作。这项工作集中于这样一个雄心勃勃的目标,即量子算法的潜在实施,允许根据其纠缠程度正确地对单个寄存器上定义的量子状态进行正确分类。由于相应的Hilbert Space的指数缩放为$ 2^n $,因此这是在经典硬件上执行的艰巨任务。我们利用“纠缠证人”的概念,即,其期望值允许将某些特定状态确定为纠缠的运营商。更详细地,我们利用量子神经网络(QNN),以成功地学习如何重现纠缠见证人的作用。这项工作可能为QML算法和量子信息协议的有效组合铺平了道路,可能超过了分析量子数据的经典方法。通过模拟相关的量子电路模型讨论并正确证明了所有这些主题。

Several proposals have been recently introduced to implement Quantum Machine Learning (QML) algorithms for the analysis of classical data sets employing variational learning means. There has been, however, a limited amount of work on the characterization and analysis of quantum data by means of these techniques, so far. This work focuses on one such ambitious goal, namely the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits, based on their degree of entanglement. This is a notoriously hard task to be performed on classical hardware, due to the exponential scaling of the corresponding Hilbert space as $2^n$. We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled. More in detail, we made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness. This work may pave the way to an efficient combination of QML algorithms and quantum information protocols, possibly outperforming classical approaches to analyse quantum data. All these topics are discussed and properly demonstrated through a simulation of the related quantum circuit model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源