论文标题

多样性与可识别率:单发生成模型中的类似人类的概括

Diversity vs. Recognizability: Human-like generalization in one-shot generative models

论文作者

Boutin, Victor, Singhal, Lakshya, Thomas, Xavier, Serre, Thomas

论文摘要

长期以来,对新概念的强大概括一直是人类智力的独特特征。但是,最新生成模型的最新进展现在导致神经体系结构能够从单个训练示例中综合新的视觉概念实例。但是,这些模型与人之间的比较是不可能的,因为生成模型的现有性能指标(即FID,IS,可能性)不适合单次生成场景。在这里,我们提出了一个新框架,以评估两个轴沿两个轴的单发生成模型:样本可识别性与多样性(即类内变异性)。使用此框架,我们对Omniglot手写数据集上的代表性单发行模型进行系统评估。我们首先表明类似GAN的模型属于多样性可识别性空间的另一端。对关键模型参数效果的广泛分析进一步表明,空间关注和上下文整合对多样性可识别性权衡具有线性贡献。相比之下,解散将模型沿抛物线曲线运输,该模型可用于最大化识别率。使用多样性可识别性框架,我们能够识别近似人类数据的模型和参数。

Robust generalization to new concepts has long remained a distinctive feature of human intelligence. However, recent progress in deep generative models has now led to neural architectures capable of synthesizing novel instances of unknown visual concepts from a single training example. Yet, a more precise comparison between these models and humans is not possible because existing performance metrics for generative models (i.e., FID, IS, likelihood) are not appropriate for the one-shot generation scenario. Here, we propose a new framework to evaluate one-shot generative models along two axes: sample recognizability vs. diversity (i.e., intra-class variability). Using this framework, we perform a systematic evaluation of representative one-shot generative models on the Omniglot handwritten dataset. We first show that GAN-like and VAE-like models fall on opposite ends of the diversity-recognizability space. Extensive analyses of the effect of key model parameters further revealed that spatial attention and context integration have a linear contribution to the diversity-recognizability trade-off. In contrast, disentanglement transports the model along a parabolic curve that could be used to maximize recognizability. Using the diversity-recognizability framework, we were able to identify models and parameters that closely approximate human data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源