论文标题
视频恢复的无监督流程序列学习的序列学习
Unsupervised Flow-Aligned Sequence-to-Sequence Learning for Video Restoration
论文作者
论文摘要
如何正确对视频序列中的框架间关系进行建模是视频恢复(VR)的重要挑战。在这项工作中,我们提出了一个无监督的流动对准序列模型(S2SVR)来解决此问题。一方面,在VR中首次探讨了在自然语言处理领域的序列到序列模型。优化的序列化建模显示了捕获框架之间远程依赖性的潜力。另一方面,我们为序列到序列模型配备了无监督的光流估计器,以最大程度地发挥其潜力。通过我们提出的无监督蒸馏损失对流量估计器进行了训练,这可以减轻数据差异和先前基于基于流动的方法的光流问题不准确的降解。通过可靠的光流,我们可以在多个帧之间建立准确的对应关系,从而缩小了1D语言和2D未对准帧之间的域差,并提高了序列到序列模型的潜力。 S2SVR在多个VR任务中显示出卓越的性能,包括视频脱张,视频超分辨率和压缩视频质量增强。代码和模型可在https://github.com/linjing7/vr-baseline上公开获取
How to properly model the inter-frame relation within the video sequence is an important but unsolved challenge for video restoration (VR). In this work, we propose an unsupervised flow-aligned sequence-to-sequence model (S2SVR) to address this problem. On the one hand, the sequence-to-sequence model, which has proven capable of sequence modeling in the field of natural language processing, is explored for the first time in VR. Optimized serialization modeling shows potential in capturing long-range dependencies among frames. On the other hand, we equip the sequence-to-sequence model with an unsupervised optical flow estimator to maximize its potential. The flow estimator is trained with our proposed unsupervised distillation loss, which can alleviate the data discrepancy and inaccurate degraded optical flow issues of previous flow-based methods. With reliable optical flow, we can establish accurate correspondence among multiple frames, narrowing the domain difference between 1D language and 2D misaligned frames and improving the potential of the sequence-to-sequence model. S2SVR shows superior performance in multiple VR tasks, including video deblurring, video super-resolution, and compressed video quality enhancement. Code and models are publicly available at https://github.com/linjing7/VR-Baseline