论文标题
通过DG代数1年度的预言2-陈述
Pretriangulated 2-representations via dg algebra 1-morphisms
论文作者
论文摘要
本文培养了一种对DG 2类别的2种陈述的前提理论。我们在某些紧凑性假设下以DG模块的dg代数为单位的1倍形态度,表征了循环前序的2-陈述,与相关的DG 2类紧凑型物体内部内部的DG模块。此外,我们研究了此类DG 2陈述的莫里塔理论和准等效性。我们将这种理论与文献中的DG分类示例相关联。
This paper develops a theory of pretriangulated 2-representations of dg 2-categories. We characterize cyclic pretriangulated 2-representations, under certain compactness assumptions, in terms of dg modules over dg algebra 1-morphisms internal to associated dg 2-categories of compact objects. Further, we investigate the Morita theory and quasi-equivalences for such dg 2-representations. We relate this theory to various classes of examples of dg categorifications from the literature.