论文标题
通过公制调整后的偏斜信息更严格的不确定性关系
Tighter sum uncertainty relations via metric-adjusted skew information
论文作者
论文摘要
在本文中,我们首先提供了三种一般规范不平等,它们用于通过公制调整后的偏斜信息提供任何有限的可观察物和量子通道的新不确定性关系。结果适用于其特殊情况,作为wigner-yanase-dyson偏斜信息。在量化通道的不确定性时,我们讨论了两种类型的下限,并比较它们之间的紧密度,同时给出了紧密的下限。我们获得的不确定性关系比现有的关系强。为了说明我们的结果,我们给出了几个具体的例子。
In this paper, we first provide three general norm inequalities, which are used to give new uncertainty relations of any finite observables and quantum channels via metric-adjusted skew information. The results are applicable to its special cases as Wigner-Yanase-Dyson skew information. In quantifying the uncertainty of channels, we discuss two types of lower bounds and compare the tightness between them, meanwhile, a tight lower bound is given. The uncertainty relations obtained by us are stronger than the existing ones. To illustrate our results, we give several specific examples.