论文标题
挖掘同构的重新配置
Reconfiguration of Digraph Homomorphisms
论文作者
论文摘要
对于固定的图H,H的h恢复问题询问是否对于两个给定的同态从图G到H,我们可以通过更改每个步骤中G的单个顶点的图像并将同态从G到H中的单个顶点进行转换为另一个。我们将wrochna的算法扩展为H恢复,其中H是无平方的无环形图,到有向图的更通用的设置。每当H是无环的二分法时,我们在这种情况下获得了多项式时间算法,该算法不包含4个代数的girth零,并且每当H是反射性的挖掘物时,既不包含代数的少数1个偶然的1循环,也不包含3个循环,也不包含4个周期的Algebraic Girth Zere Zere Zero Zero Zero Zero。
For a fixed graph H, the H-Recoloring problem asks whether for two given homomorphisms from a graph G to H, we can transform one into the other by changing the image of a single vertex of G in each step and maintaining a homomorphism from G to H throughout. We extend an algorithm of Wrochna for H-Recoloring where H is a square-free loopless undirected graph to the more general setting of directed graphs. We obtain a polynomial-time algorithm for H-Recoloring in this setting whenever H is a loopless digraph that does not contain a 4-cycle of algebraic girth zero and whenever H is a reflexive digraph that contains neither a 3-cycle of algebraic girth 1 nor a 4-cycle of algebraic girth zero.