论文标题
波斯自然语言推论:一种元学习方法
Persian Natural Language Inference: A Meta-learning approach
论文作者
论文摘要
合并其他语言的信息可以改善低资源语言的任务结果。一种用于低资源语言的功能性自然语言处理系统的强大方法是将多语言预培训的表示与跨语性转移学习相结合。但是,通常,跨任务或跨语言分别学习共享表示形式。本文提出了一种用于推断波斯语自然语言的元学习方法。或者,元学习使用不同的任务信息(例如,波斯语中的质量请QA)或其他语言信息(例如英语中的自然语言推论)。此外,我们研究了任务增强策略在形成其他高质量任务方面的作用。我们使用四种语言和辅助任务评估了提出的方法。与基线方法相比,提出的模型始终胜过它,将准确性提高了大约6%。我们还检查了使用零射门评估和CCA相似性找到适当的初始参数的效果。
Incorporating information from other languages can improve the results of tasks in low-resource languages. A powerful method of building functional natural language processing systems for low-resource languages is to combine multilingual pre-trained representations with cross-lingual transfer learning. In general, however, shared representations are learned separately, either across tasks or across languages. This paper proposes a meta-learning approach for inferring natural language in Persian. Alternately, meta-learning uses different task information (such as QA in Persian) or other language information (such as natural language inference in English). Also, we investigate the role of task augmentation strategy for forming additional high-quality tasks. We evaluate the proposed method using four languages and an auxiliary task. Compared to the baseline approach, the proposed model consistently outperforms it, improving accuracy by roughly six percent. We also examine the effect of finding appropriate initial parameters using zero-shot evaluation and CCA similarity.