论文标题

空间 - 周期性交互式动态图形卷积网络,用于流量预测

Spatial-Temporal Interactive Dynamic Graph Convolution Network for Traffic Forecasting

论文作者

Liu, Aoyu, Zhang, Yaying

论文摘要

准确的交通预测对于智能城市实现交通控制,路线计划和流程检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们提出了一个基于神经网络的时空交互式动态图卷积网络(StidGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构以间隔将序列划分,并通过交互式学习策略同步捕获流量数据的时空依赖性。互动学习策略使StidgCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。对四个现实世界流量流数据集进行的广泛实验表明,StidgCN的表现优于最新基线。

Accurate traffic forecasting is essential for smart cities to achieve traffic control, route planning, and flow detection. Although many spatial-temporal methods are currently proposed, these methods are deficient in capturing the spatial-temporal dependence of traffic data synchronously. In addition, most of the methods ignore the dynamically changing correlations between road network nodes that arise as traffic data changes. We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) to address the above challenges for traffic forecasting. Specifically, we propose an interactive dynamic graph convolution structure, which divides the sequences at intervals and synchronously captures the traffic data's spatial-temporal dependence through an interactive learning strategy. The interactive learning strategy makes STIDGCN effective for long-term prediction. We also propose a novel dynamic graph convolution module to capture the dynamically changing correlations in the traffic network, consisting of a graph generator and fusion graph convolution. The dynamic graph convolution module can use the input traffic data and pre-defined graph structure to generate a graph structure. It is then fused with the defined adaptive adjacency matrix to generate a dynamic adjacency matrix, which fills the pre-defined graph structure and simulates the generation of dynamic associations between nodes in the road network. Extensive experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源