论文标题

深度学习的分层分布意识测试

Hierarchical Distribution-Aware Testing of Deep Learning

论文作者

Huang, Wei, Zhao, Xingyu, Banks, Alec, Cox, Victoria, Huang, Xiaowei

论文摘要

深度学习(DL)越来越多地用于安全至关重要的应用中,从而引起了人们对其可靠性的担忧。 DL遭受了缺乏鲁棒性的众所周知的问题,尤其是在面对被称为对抗性例子(AES)的对抗扰动时。尽管最近努力使用高级攻击和测试方法检测AE,但这些方法通常忽略了扰动的输入分布和感知质量。结果,检测到的AE在实际应用中可能无关,或者对人类观察者来说似乎是不现实的。这可能会浪费在现实世界中很少发生的稀有AE的资源,从而限制了DL模型可靠性的改善。 在本文中,我们提出了一种用于检测AE的新的鲁棒性测试方法,该方法同时考虑了特征级别分布和像素级分布,从而捕获了对抗性扰动的感知质量。这两个考虑因素是由一种新型的分层机制编码的。首先,我们根据特征水平分布的密度和对抗鲁棒性的脆弱性选择测试种子。测试种子的脆弱性由辅助信息表明,这些信息与局部鲁棒性高度相关。在测试种子的情况下,我们开发了一种新型的基于遗传算法的局部测试案例生成方法,其中两个适应性功能可用于控制检测到的AE的感知质量。最后,广泛的实验证实,考虑到层次分布的我们的整体方法优于无视任何输入分布或仅考虑单个(非层次结构)分布的最新方法,而不仅要检测到不可察觉的AE,而且还提高了测试下DL模型的整体鲁棒性。

Deep Learning (DL) is increasingly used in safety-critical applications, raising concerns about its reliability. DL suffers from a well-known problem of lacking robustness, especially when faced with adversarial perturbations known as Adversarial Examples (AEs). Despite recent efforts to detect AEs using advanced attack and testing methods, these approaches often overlook the input distribution and perceptual quality of the perturbations. As a result, the detected AEs may not be relevant in practical applications or may appear unrealistic to human observers. This can waste testing resources on rare AEs that seldom occur during real-world use, limiting improvements in DL model dependability. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the feature level distribution and the pixel level distribution, capturing the perceptual quality of adversarial perturbations. The two considerations are encoded by a novel hierarchical mechanism. First, we select test seeds based on the density of feature level distribution and the vulnerability of adversarial robustness. The vulnerability of test seeds are indicated by the auxiliary information, that are highly correlated with local robustness. Given a test seed, we then develop a novel genetic algorithm based local test case generation method, in which two fitness functions work alternatively to control the perceptual quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions is superior to the state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only detecting imperceptible AEs but also improving the overall robustness of the DL model under testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源