论文标题

在基于仿真的验证中,监督学习的指导测试选择

Supervised Learning for Coverage-Directed Test Selection in Simulation-Based Verification

论文作者

Masamba, Nyasha, Eder, Kerstin, Blackmore, Tim

论文摘要

受限的随机测试生成是生成基于仿真验证的刺激的最广泛采用的方法之一。随机性会导致测试多样性,但是测试往往会反复行使相同的设计逻辑。约束(通常是手动)将随机测试偏向有趣的,难以触及且尚有意义的逻辑。但是,随着验证的进行,大多数受约束的随机测试对功能覆盖率几乎没有影响。如果刺激的产生比模拟消耗的资源要少得多,那么更好的方法涉及随机生成大量测试,选择最有效的子集,并且只能模拟该子集。在本文中,我们介绍了一种新颖的方法,用于自动限制提取和测试选择。我们称之为覆盖范围的测试选择的方法基于从覆盖范围反馈中进行的监督学习。我们的方法将选择偏向于具有增加功能覆盖范围的可能性高的测试,并优先考虑它们进行仿真。我们展示了指导的测试选择如何减少手动约束写作,优先考虑有效测试,减少验证资源消耗以及加速在大型现实生活中的工业硬件设计上的覆盖范围。

Constrained random test generation is one of the most widely adopted methods for generating stimuli for simulation-based verification. Randomness leads to test diversity, but tests tend to repeatedly exercise the same design logic. Constraints are written (typically manually) to bias random tests towards interesting, hard-to-reach, and yet-untested logic. However, as verification progresses, most constrained random tests yield little to no effect on functional coverage. If stimuli generation consumes significantly less resources than simulation, then a better approach involves randomly generating a large number of tests, selecting the most effective subset, and only simulating that subset. In this paper, we introduce a novel method for automatic constraint extraction and test selection. This method, which we call coverage-directed test selection, is based on supervised learning from coverage feedback. Our method biases selection towards tests that have a high probability of increasing functional coverage, and prioritises them for simulation. We show how coverage-directed test selection can reduce manual constraint writing, prioritise effective tests, reduce verification resource consumption, and accelerate coverage closure on a large, real-life industrial hardware design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源