论文标题
对区块链和加密货币的数字验证光子计算的实验评估
Experimental evaluation of digitally-verifiable photonic computing for blockchain and cryptocurrency
论文作者
论文摘要
随着区块链技术和加密货币越来越成为主流,维持运行这些分散平台的计算能力所需的能源成本不断增加,为更节能的硬件创造了一个市场。光子加密哈希函数,使用光子集成电路来加速计算,承诺能源效率,以验证交易和加密网络中的采矿。但是,像许多模拟计算方法一样,当前对光子加密哈希函数的提案承诺与比特币相似的安全性保证,因为比特币容易受到系统误差的影响,因此,尽管具有高数值精确度(与低光电器噪声相关),多个设备可能无法达成计算的共识。在本文中,我们从理论上和实验上证明了一个更一般的鲁棒分离模拟加密哈希函数家族,我们将其作为灯塔引入,利用整数矩阵 - 矢量在干涉仪的光子网络网络上。可以调整Lighthash的困难,以足以容忍系统错误(校准误差,丢失误差,耦合错误和相位误差),并保留比特币协议中存在的固有的安全保证。最后,除了我们的概念验证验证外,我们定义了``光子优势''标准,并证明了CMOS光电的最新发展(包括模拟数字转换)是如何实现了这种优势的强大光子计算,并最终为分散的光子技术带来了新的市场。
As blockchain technology and cryptocurrency become increasingly mainstream, ever-increasing energy costs required to maintain the computational power running these decentralized platforms create a market for more energy-efficient hardware. Photonic cryptographic hash functions, which use photonic integrated circuits to accelerate computation, promise energy efficiency for verifying transactions and mining in a cryptonetwork. Like many analog computing approaches, however, current proposals for photonic cryptographic hash functions that promise similar security guarantees as Bitcoin are susceptible to systematic error, so multiple devices may not reach a consensus on computation despite high numerical precision (associated with low photodetector noise). In this paper, we theoretically and experimentally demonstrate that a more general family of robust discrete analog cryptographic hash functions, which we introduce as LightHash, leverages integer matrix-vector operations on photonic mesh networks of interferometers. The difficulty of LightHash can be adjusted to be sufficiently tolerant to systematic error (calibration error, loss error, coupling error, and phase error) and preserve inherent security guarantees present in the Bitcoin protocol. Finally, going beyond our proof-of-concept, we define a ``photonic advantage'' criterion and justify how recent developments in CMOS optoelectronics (including analog-digital conversion) provably achieve such advantage for robust and digitally-verifiable photonic computing and ultimately generate a new market for decentralized photonic technology.