论文标题
单数Yoneda类别和稳定函数
The singular Yoneda category and the stabilization functor
论文作者
论文摘要
对于Noetherian Ring $λ$,稳定功能子在Krause的意义上产生了$λ$的奇异性类别的嵌入到同型$λ$ -MODULES的无循环络合物中。当$λ$包含一个半imple artinian subling $ e $时,我们使用$ e $ e $ relative Singular yoneda dg类别的$λ$的HOM综合体对稳定函数进行了明确描述。
For a noetherian ring $Λ$, the stabilization functor in the sense of Krause yields an embedding of the singularity category of $Λ$ into the homotopy category of acyclic complexes of injective $Λ$-modules. When $Λ$ contains a semisimple artinian subring $E$, we give an explicit description of the stabilization functor using the Hom complexes in the $E$-relative singular Yoneda dg category of $Λ$.