论文标题

真实ML:识别,探索和表达机器学习研究的局限性

REAL ML: Recognizing, Exploring, and Articulating Limitations of Machine Learning Research

论文作者

Smith, Jessie J., Amershi, Saleema, Barocas, Solon, Wallach, Hanna, Vaughan, Jennifer Wortman

论文摘要

局限性周围的透明度可以改善研究的科学严格性,有助于确保对研究结果的适当解释,并使研究主张更可信。尽管有这些好处,但机器学习(ML)研究社区仍缺乏透露和讨论局限性的完善规范。为了解决这一差距,我们与30 mL和ML-ADJACACEST研究人员进行了迭代设计过程,以开发和测试Real ML,这是一系列指导活动,以帮助ML研究人员认识,探索和阐明其研究的局限性。使用三阶段的访谈和调查研究,我们确定了ML研究人员对局限性的看法,以及在识别,探索和表达局限性时面临的挑战。我们开发了真正的ML来应对其中一些实际挑战,并强调了其他文化挑战,这些挑战将需要更广泛的社区规范来解决。我们希望我们的研究和真正的ML有助于将ML研究界带入更加积极和适当的局限性。

Transparency around limitations can improve the scientific rigor of research, help ensure appropriate interpretation of research findings, and make research claims more credible. Despite these benefits, the machine learning (ML) research community lacks well-developed norms around disclosing and discussing limitations. To address this gap, we conduct an iterative design process with 30 ML and ML-adjacent researchers to develop and test REAL ML, a set of guided activities to help ML researchers recognize, explore, and articulate the limitations of their research. Using a three-stage interview and survey study, we identify ML researchers' perceptions of limitations, as well as the challenges they face when recognizing, exploring, and articulating limitations. We develop REAL ML to address some of these practical challenges, and highlight additional cultural challenges that will require broader shifts in community norms to address. We hope our study and REAL ML help move the ML research community toward more active and appropriate engagement with limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源